
Security Assessment

Juicebox Contracts V2
Mar 29th, 2022

Table of Contents
Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings
GLOBAL-01 : Unknown implementation of interfaces

JBE-01 : User funds could be arbitrarily transfer out

JBE-02 : Centralization risk in JBETHPaymentTerminal.sol

JBE-03 : Potential redeem issue for investors

JBH-01 : Centralization risk in JBETHPaymentTerminalStore.sol

JCK-01 : Centralization risk in JBController.sol

JCK-02 : Risk on the passed-in variable `_reservedRate`

JCK-03 : Logic issue on migration

JCK-04 : Logic issue about `_processedTokenTrackerOf[_projectId]`

JCK-05 : Logic issue in `_reservedTokenAmountFrom()`

JCK-06 : Lack of restriction on function `launchProjectFor()`

JDC-01 : Centralization risk in JBDirectory.sol

JFS-01 : Centralization risk in JBFundingCycleStore.sol

JPC-01 : Centralization risk in JBPrices.sol

JPC-02 : Third party dependencies of `AggregatorV3Interface`

JPK-01 : Centralization risk in JBProjects.sol

JSS-01 : Centralization risk in JBSplitsStore.sol

JTC-01 : Centralization risk in JBToken.sol

JTS-01 : Centralization risk in JBTokenStore.sol

JUI-01 : Project contract implementations and parameter settings can be arbitrarily set and modified

JUI-02 : Investor assets are diluted by the reserved token

JUI-03 : Calculation issues by wrong divisors

Appendix

Disclaimer

About

Juicebox Contracts V2 Security AssessmentJuicebox Contracts V2 Security Assessment

Summary
This report has been prepared for Juicebox Contracts V2 to discover issues and vulnerabilities in the

source code of the Juicebox Contracts V2 project as well as any contract dependencies that were not part

of an officially recognized library. A comprehensive examination has been performed, utilizing Static

Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices.
We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

Juicebox Contracts V2 Security Assessment

Overview

Project Summary

Project Name Juicebox Contracts V2

Platform Ethereum

Language Solidity

Codebase https://github.com/jbx-protocol/juice-contracts-v2

Commit 2d846c510df9fd3e6eb844a08db0ea5cf6d3f095

Audit Summary

Delivery Date Mar 29, 2022 UTC

Audit Methodology Static Analysis, Manual Review

Vulnerability Summary

Vulnerability Level Total Pending Declined Acknowledged Mitigated Partially Resolved Resolved

Critical 2 0 0 2 0 0 0

Major 12 0 0 12 0 0 0

Medium 3 0 0 2 0 0 1

Minor 4 0 0 4 0 0 0

Informational 1 0 0 1 0 0 0

Discussion 0 0 0 0 0 0 0

Juicebox Contracts V2 Security Assessment

https://github.com/jbx-protocol/juice-contracts-v2

Audit Scope

ID File SHA256 Checksum

JBC abstract/JBControllerUtility.sol
f75a67bf73e33511d1bf95387142400a3b1722b343e65d48fc64a1

0907a188c1

JBO abstract/JBOperatable.sol
5eece505fa18abef81219f20dadea3f138b3c4c2be9b0dcf9e2c48a

8fe0881d0

JBP abstract/JBProject.sol
df052296dfcc532d903a01e8ef11b180d02cc42ab2a43074043835

f849cdd334

JBB enums/JBBallotState.sol
2cca68ba8359303baffdd3d2c0f40ec7ff90574e2a3e2c5b05dca21

bc995bca8

IJB interfaces/IJBController.sol
71bb74bafbcfaa86a108dd4e0d6bdc60eda177ca5a58254f6f133e

64ed5b45de

IJC interfaces/IJBControllerUtility.sol
12a6273523cefa2c517b8813e165187a34a5365be3acbc2464d8b

303789b0782

IJD interfaces/IJBDirectory.sol
286cfd3dcf313cc42da10a7e474762fabfcb93d88a4ea73feb9e33b

346e6b5a5

IJE interfaces/IJBETHPaymentTerminal.sol
a722d6b3bdf67d71139c5a1c4bd950e8b47e1cff0a545042e98a8f

d66557fab6

IJF interfaces/IJBFeeGauge.sol
1ca6ef69a31ce45999c3aaa9b916ad334b9e9f773192d4dea069a0

d89086f880

IJK interfaces/IJBFundingCycleBallot.sol
6ff022c5d5d0f8c540905ca912036be119f50326b298a112f690732

764fa4680

IJS
interfaces/IJBFundingCycleDataSourc

e.sol

f12d70cc76767cc64079a88709ea3eb1b1de73bf6be82fd6e2bd33

c12cb96ade

IJP interfaces/IJBFundingCycleStore.sol
53c0a9e1b8eb99e481fcbe32fd5782fce6950b29a38e9f94075a09

b20d348699

IJO interfaces/IJBOperatable.sol
4d262fa25df12c656dabad4e9c205af48c69dbdad7841d414feba6

253efce24f

IBO interfaces/IJBOperatorStore.sol
f885ac9b3f349bb1822146ca81d56382ba05d1465ff5da9f7e05c58

67638f729

Juicebox Contracts V2 Security Assessment

ID File SHA256 Checksum

IBP interfaces/IJBPayDelegate.sol
79b9fd8378a9977d153079e2ffdca7ddf7102588598c37fe70bc419

ed80564c1

IBC interfaces/IJBPrices.sol
9c89ff63e59168c89cef60982a6ef204d45a7bd77611639336eedfa

43fd058fc

IBK interfaces/IJBProjects.sol
fd02f49ff9355a99995f5b221b0149b813b83de8272b54bb60b699

ad9e2d19a9

IJR interfaces/IJBRedemptionDelegate.sol
c24375efa81265aebfd6d77328c011200fd8be070655287df6467d

747d6ed802

IJA interfaces/IJBSplitAllocator.sol
93d5a9b00a57c53f7e2903fa1752ccddeda0eed49d39c00d5a2ab

00f74738715

IBS interfaces/IJBSplitsStore.sol
ae65fe7ad157d66abab08c87c3572706482a335a1c186e5e3d327

57cfe55abd8

IJT interfaces/IJBTerminal.sol
ab6d1f4d102136759a88af86d11a0b347ad8694fac0611e05cdd23

20a19a919e

IJU interfaces/IJBTerminalUtility.sol
a216a60bc4bd4b4c30613417aeb733290c4e8d3c554daadb8432

14367f6e3d0c

IBT interfaces/IJBToken.sol
9b4bcd58e98d6499d7db12f62ea4af3dd07fcceee735dcf2cfa4135

4d25c6a4a

ITS interfaces/IJBTokenStore.sol
c009cd2db847147d4f5c98cf259cce468bce03a4b9477088b74f93

962d136dc3

IBU interfaces/IJBTokenUriResolver.sol
ea6337a80244b2000d9948f627d01f7ca5cd105f89012fc0fa040f7

69fef99be

JBK libraries/JBConstants.sol
7f8ad371cc2e037125b131ed15e7c52ba60a1ac56678eb1ccb064

32f3ea543a9

JCC libraries/JBCurrencies.sol
507d3e929ceb8e354702023bd85f64ab00db4f8f4634bd1cb02610

296efd4944

JBF
libraries/JBFundingCycleMetadataRes

olver.sol

5a85a2634e57396086dea8567b6e08e58f860f0fe743b7ac0051c1

b364554907

JOC libraries/JBOperations.sol
ad7a60290e1c8deca0a25502ea61ea94ef6552244af005b031029b

1259810930

Juicebox Contracts V2 Security Assessment

ID File SHA256 Checksum

JBS libraries/JBSplitsGroups.sol
c5ade262956b060e82168ef3807d554a97d6f720bd971fd110839d

4dd2f0a3d8

JBT libraries/JBTokens.sol
cee85338870941dbceb69cdf03a62bce7352e2786c0e163e99bf6

de416714e0a

JBD structs/JBDidPayData.sol
9b998eb39ce9a70ee4c0f55f7b7fa52daed60ce17c20d74f33c99d

552e95ab8c

JBR structs/JBDidRedeemData.sol
29f144559a8871cdbbd6b434848ab6be6c3e89391732782a09ed9

cbdf4eaf4d0

JFC structs/JBFee.sol
49f90cdccc27309443eafd8388175c3415585628fd3f7b226d0552f

c9ca61fdd

JBA structs/JBFundAccessConstraints.sol
e507635c9f4d7e8faea13f4043d802ef72233ab72df6c41d31da89b

588cee04c

JFK structs/JBFundingCycle.sol
5ed5d997117b1ef69978632576df5b2f0b0d0b39ceeee0200334e1

65b980c87a

JFD structs/JBFundingCycleData.sol
cf71da35da7ff461a5252b49d2cfe0fcc478dd8eb4d3a50211c4e78

40ee5c708

JBM structs/JBFundingCycleMetadata.sol
9417e31dd783ac2ca11525ae582e0cb207f2ece80f771d6ac46250

a955ae033b

JBG structs/JBGroupedSplits.sol
113f51f2c1deb689d09f3c1e54ff6901eaada99d61f32b68bbe9cf3b

1773f864

JOD structs/JBOperatorData.sol
265e05d7152162b1beb484a9782c5d07be61edf353929ade34d7c

c1806ff18c1

JPP structs/JBPayParamsData.sol
0b99667ae3331e6c9d7595e93f2d26fcec7f9ac141b81dd05000a5

2351cd2e52

JPM structs/JBProjectMetadata.sol
4422d5a94d7cf61c5bccd69f0c0c860d9496793198eea6ac3b10a

bfbd80b6567

JRP structs/JBRedeemParamsData.sol
00c35d9d26a5a32cc346b11c91ec41d785190093add78395d877

52ebe210dbf1

JSC structs/JBSplit.sol
0d0d66beb1f4ffb02afbb00c44934852cbf3c59ba169b01effa1bafc

cfebbde3

Juicebox Contracts V2 Security Assessment

ID File SHA256 Checksum

JFF
test/JBFakeFundingCycleMetadataRes

olver.sol

83b00dee9fefb26018c3b1ac228b9b3d1161806079d4e1571dd09

2b587277d93

JFP test/JBFakeProject.sol
3e246749e1b68f92ad13f1968c4336ca9661c9231607ff69f20c209

ae3103599

JDR JB3DayReconfigurationBufferBallot.sol
243069ed3efe0d18c5a97d39de6a283e5892ebe4a1bc377ae0a8b

4a02c1c219b

JDB JB7DayReconfigurationBufferBallot.sol
5fed6c70711f61144686ae3d6f3f383ed66739373fecf126e8b0492

81ab79d96

JCK JBController.sol
956cf815f20ab9941813c1cd75533886207e4f6f1aa37c2b6e2c772

d11077e3b

JDC JBDirectory.sol
3fda232dcad8644527597a47159fccb71f1a7bf892d369766db26c

98a39586e2

JBE JBETHPaymentTerminal.sol
f1ae346d5c827363e327d4e5d2cc6fbde8012a9062e43f0c8fc4527

68649968c

JBH JBETHPaymentTerminalStore.sol
528c3d799a0fa0a6bcda11c74ec470968765e2387cea4cb415b70f

85b37074f9

JFS JBFundingCycleStore.sol
c2293335a08757fade1518edd4dee01b597dc54251dc87bf30df43

d2077cbdb5

JOS JBOperatorStore.sol
0cc20d0b9fa9174facd06bbfc369b0f92797821709718044b17034

c6eafd87db

JPC JBPrices.sol
d391951753aabac4aeccb6c6e15a5573ac592e4869370b9bb422d

02e2f44f420

JPK JBProjects.sol
c2a94bb2369141c2f2597ccd7961f949443e761b1749ed84d389d

ef2d14f5eb6

JSS JBSplitsStore.sol
34d61a64d97c92a73486d1ca353a96ba70d9b5e062cf2806f6def9

e09ddf7821

JTC JBToken.sol
906efd8c5d07ab76705c403cf969e16ba51d44af0202c3792d936b

3e21034254

JTS JBTokenStore.sol
3b2783a320f4b852012de6624d2f66477494808b8e1fd510522870

a3b7bde28a

Juicebox Contracts V2 Security Assessment

Juicebox Contracts V2 Security Assessment

Findings

ID Title Category Severity Status

GLOBAL-01 Unknown implementation of interfaces Volatile Code Minor Acknowledged

JBE-01 User funds could be arbitrarily transfer out
Centralization

/ Privilege
Critical Acknowledged

JBE-02
Centralization risk in

JBETHPaymentTerminal.sol

Centralization

/ Privilege
Major Acknowledged

JBE-03 Potential redeem issue for investors Logical Issue Major Acknowledged

JBH-01
Centralization risk in

JBETHPaymentTerminalStore.sol

Centralization

/ Privilege
Major Acknowledged

JCK-01 Centralization risk in JBController.sol
Centralization

/ Privilege
Major Acknowledged

JCK-02
Risk on the passed-in variable

_reservedRate
Logical Issue Medium Resolved

JCK-03 Logic issue on migration Logical Issue Medium Acknowledged

JCK-04
Logic issue about

_processedTokenTrackerOf[_projectI

d]

Logical Issue Medium Acknowledged

JCK-05
Logic issue in

_reservedTokenAmountFrom()
Logical Issue Minor Acknowledged

JCK-06
Lack of restriction on function

launchProjectFor()
Volatile Code Informational Acknowledged

Juicebox Contracts V2 Security Assessment

22
Total Issues

Critical 2 (9.09%)

Major 12 (54.55%)

Medium 3 (13.64%)

Minor 4 (18.18%)

Informational 1 (4.55%)

Discussion 0 (0.00%)

ID Title Category Severity Status

JDC-01 Centralization risk in JBDirectory.sol
Centralization

/ Privilege
Major Acknowledged

JFS-01 Centralization risk in JBFundingCycleStore.sol
Centralization

/ Privilege
Major Acknowledged

JPC-01 Centralization risk in JBPrices.sol
Centralization

/ Privilege
Major Acknowledged

JPC-02
Third party dependencies of

AggregatorV3Interface
Logical Issue Minor Acknowledged

JPK-01 Centralization risk in JBProjects.sol
Centralization

/ Privilege
Major Acknowledged

JSS-01 Centralization risk in JBSplitsStore.sol
Centralization

/ Privilege
Major Acknowledged

JTC-01 Centralization risk in JBToken.sol
Centralization

/ Privilege
Major Acknowledged

JTS-01 Centralization risk in JBTokenStore.sol
Centralization

/ Privilege
Major Acknowledged

JUI-01

Project contract implementations and

parameter settings can be arbitrarily set and

modified

Centralization

/ Privilege
Critical Acknowledged

JUI-02
Investor assets are diluted by the reserved

token
Logical Issue Major Acknowledged

JUI-03 Calculation issues by wrong divisors Logical Issue Minor Acknowledged

Juicebox Contracts V2 Security Assessment

GLOBAL-01 | Unknown Implementation Of Interfaces

Category Severity Location Status

Volatile Code Minor Global Acknowledged

Description

There is no contract implementation present for the interfaces IJBFeeGauge , IJBSplitAllocator ,

IJBFundingCycleDataSource , IJBPayDelegate and IJBRedemptionDelegate in the codebase. The scope

of the audit treats 3rd party entities as black boxes and assumes their functional correctness. However, in

the real world, 3rd parties can be compromised and this may lead to lost or stolen assets. In addition,

upgrades of 3rd parties can possibly create severe impacts, such as increasing fees of 3rd parties,

migrating to new LP pools, etc.

Recommendation

We recommend ensuring the external addresses are correct, the external contracts are credible, and the

third-party implementations and the way these functions are called can meet the requirements. We also

encourage the team to constantly monitor the statuses of 3rd parties to mitigate the side effects when

unexpected activities are observed.

Alleviation

The team acknowledged this issue and they stated the following:

"As you’ve mentioned, anyone can roll out a terminal for people to use. These new terminals have arbitrary

functional differences from the ones written by the community and should require separate audits. It is the

responsibility of projects to determine the efficacy and legitimacy of terminals they accept funds through.

In the scope of this audit are the JBETHPaymentTerminal and JBERC20PaymentTerminal."

Juicebox Contracts V2 Security Assessment

JBE-01 | User Funds Could Be Arbitrarily Transfer Out

Category Severity Location Status

Centralization / Privilege Critical JBETHPaymentTerminal.sol Acknowledged

Description

The function distributePayoutsOf() distribute the ETHs paid by normal users among the splits and

transfer the _leftoverDistributionAmount ETHs directly to the project owner's address. These

addresses are all EOAs(Externally Owned Account) set by project owner or RECONFIGURE operators.

Additionally, by calling the function useAllowanceOf() , the project owner and USE_ALLOWANCE operators

can send the rest ETHs (overflow) to an arbitrary address _beneficiary , which is an EOA as well.

As a result, any compromise to the EOAs may allow the malicious owner to steal the ETHs.

Recommendation

We strongly recommend that the EOA addresses in the protocol be improved via a decentralized

mechanism or smart-contract-based accounts with enhanced security practices.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different

level in terms of short-term and long-term:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with

the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Juicebox Contracts V2 Security Assessment

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Alleviation

The team acknowledged this issue and they stated the following:

"Being a treasury management tool, transfer of fund in and out of Juicebox is intended.

The distributePayoutsOf() function sends a project’s treasury funds to configured splits, and sends any

remaining funds to the project owner’s address if the splits do not add up to 100% by design. Payouts can

only be distributed from the treasury within the project’s distribution limit.

The useAllowanceOf() function allows a project owner to withdraw discretionary funds from its project’s

overflow within the allowance that it pre-configures in the funding cycle. This is by design."

(reference: https://docs.juicebox.money/protocol/learn/glossary/overflow)

Juicebox Contracts V2 Security Assessment

https://docs.juicebox.money/protocol/learn/glossary/overflow

JBE-02 | Centralization Risk In JBETHPaymentTerminal.sol

Category Severity Location Status

Centralization / Privilege Major JBETHPaymentTerminal.sol Acknowledged

Description

In the contract JBETHPaymentTerminal , the role owner has the authority over the following function:

function setFee() : change the fee percentage and contractually capped at 5%,

function setFeeGauge() : change the feeGauge address to affect the fee discount amount.

Also, the role project owner has the authority over the following function:

function useAllowanceOf() : send ETH to arbitrary _beneficiary address with the

overflowAllowanceOf as the limit,

function redeemTokensOf() : claim the project's overflowed ETH,

function migrate() : migrate project funds and operations to a new terminal,

function processFees() : process the held fees.

Among the previous mentioned functions which can be called by the project owner, the specific operator

roles have the authority over the following function:

The operator with the USE_ALLOWANCE permission can call the function useAllowanceOf() .

The operator with the REDEEM permission can call the function redeemTokensOf() .

The operator with the MIGRATE_TERMINAL permission can call the function migrate() .

The operator with the PROCESS_FEES permission can call the function processFees() .

The contract deployer has the authority over the following function:

function constructor() : transfer the owner role to an arbitrary address, initialize important contract

addresses to any contract addresses implementing the corresponding interfaces, for example:

operatorStore , projects , directory , splitsStore .

Any compromise to the privileged accounts may allow the hacker to take advantage of this authority and

users' assets may suffer loss.

Recommendation

Juicebox Contracts V2 Security Assessment

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different

level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with

the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Juicebox Contracts V2 Security Assessment

Alleviation

The team acknowledged this issue and they stated the following:

"For each project, the above-mentioned functions can only be accessed by either the address that owns

the project's NFT or by operator addresses explicitly allowed by the address that owns the project's NFT."

(reference: https://docs.juicebox.money/protocol/learn/glossary/operator#operatable-functionality)

Juicebox Contracts V2 Security Assessment

https://docs.juicebox.money/protocol/learn/glossary/operator#operatable-functionality

JBE-03 | Potential Redeem Issue For Investors

Category Severity Location Status

Logical Issue Major JBETHPaymentTerminal.sol Acknowledged

Description

Only when there exist overflow ETHs could investors redeem their funds, nevertheless, under the number

of distributionLimitOf() and overflowAllowanceOf() , the project owner and corresponding operators

could always revoke distributePayoutsOf() and useAllowanceOf() to take funds away. Besides, the

ETHs redeemed by the investors would further shrink in terms of the _redemptionRate and the

reservedRate , as a result, only a few ETHs or even none will be left when investors want to redeem their

funds.

Recommendation

We would like to confirm with the client if the current implementation aligns with the original project design.

Alleviation

The team acknowledged this issue and they stated the following:

"Overflow is a function of a project’s distribution limit, this is by design. If a project owner reconfigures its

distribution limit, it can reshape was is reclaimable by token holders who redeem. This is by design."

(reference: https://docs.juicebox.money/protocol/learn/glossary/overflow)

Juicebox Contracts V2 Security Assessment

https://docs.juicebox.money/protocol/learn/glossary/overflow

JBH-01 | Centralization Risk In JBETHPaymentTerminalStore.sol

Category Severity Location Status

Centralization / Privilege Major JBETHPaymentTerminalStore.sol Acknowledged

Description

In the contract JBETHPaymentTerminalStore , the role terminal has the authority over the following

function:

function recordPaymentFrom() : record user payment data and mint project token to the user,

function recordDistributionFor() : calculate and record the distribution amount,

function recordUsedAllowanceOf() : calculate and record the withdrawnAmount amount,

function recordRedemptionFor() : burn user's project token, calculate and record the redeem

amount and transfer the corresponding amount of ETH to the user,

function recordAddedBalanceFor() : add the ETH balance of a given project,

function recordMigration() : set the current project ETH balance to 0 and return the original

balance.

The contract deployer has the authority over the following function:

function constructor() : initialize important contract addresses to any contract addresses

implementing the corresponding interfaces, for example: prices , projects , directory ,

fundingCycleStore and tokenStore .

Any compromise to the privileged accounts may allow the hacker to take advantage of this authority and

users' assets may suffer loss.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different

level in terms of short-term, long-term and permanent:

Juicebox Contracts V2 Security Assessment

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with

the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

The team acknowledged this issue and they stated the following:

"A store’s terminal is the only address that has access to recording data. This is by design. It would be a

major flaw if this were not the case."

Juicebox Contracts V2 Security Assessment

JCK-01 | Centralization Risk In JBController.sol

Category Severity Location Status

Centralization / Privilege Major JBController.sol Acknowledged

Description

In the contract JBController , the role project owner has the authority over the following function:

function launchFundingCycleFor() : initialize the funding cycle configurations for a given project,

function reconfigureFundingCyclesOf() : change the funding cycle configurations for a given

project,

function issueTokenFor() : create a new ERC20 token and associated with a given project ,

function changeTokenOf() : change the associated token of a give project,

function mintTokensOf() : mint new tokens for a give project,

function burnTokensOf() : burn tokens for a give project,

function migrate() : move the project to another controller.

Also, the operator with the RECONFIGURE permission has the authority over the following function:

function launchFundingCycleFor() : initialize the funding cycle configurations for a given project,

function reconfigureFundingCyclesOf() : change the funding cycle configurations for a given

project.

The operator with the ISSUE permission has the authority over the following function:

function issueTokenFor() : create a new ERC20 token associated with a given project.

The operator with the CHANGE_TOKEN permission has the authority over the following function:

function changeTokenOf() : change the associated token of a given project.

The operator with the MINT permission has the authority over the following function:

function mintTokensOf() : mint new tokens for a give project.

The operator with the BURN permission has the authority over the following function:

function burnTokensOf() : burn tokens for a give project.

The operator with the MIGRATE_CONTROLLER permission has the authority over the following function:

Juicebox Contracts V2 Security Assessment

function migrate() : move the project to another controller.

The contract deployer has the authority over the following function:

function constructor() : initialize important contract addresses to any contract addresses

implementing the corresponding interfaces, for example: operatorStore , projects , directory ,

fundingCycleStore , tokenStore and splitsStore .

Any compromise to the privileged accounts may allow the hacker to take advantage of this authority and

users' assets may suffer loss.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different

level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with

the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Juicebox Contracts V2 Security Assessment

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

The team acknowledged this issue and they stated the following:

"For each project, the above-mentioned functions can only be accessed by either the address that owns

the project's NFT or by operator addresses explicitly allowed by the address that owns the project's NFT."

(reference: https://docs.juicebox.money/protocol/learn/glossary/operator#operatable-functionality)

Juicebox Contracts V2 Security Assessment

https://docs.juicebox.money/protocol/learn/glossary/operator#operatable-functionality

JCK-02 | Risk On The Passed-in Variable _reservedRate

Category Severity Location Status

Logical Issue Medium JBController.sol: 543 Resolved

Description

In the function mintTokensOf() , the _reservedRate is a passed-in variable set by the caller. We

understand the contract JBETHPaymentTerminalStore will call this function and pass the correct value

fundingCycle.reservedRate() , however, the project owner and other MINT operators can also call this

function externally with an arbitrary _reservedRate value.

Recommendation

We would like to confirm with the client if the current implementation aligns with the original project design.

It may be better to get the reservedRate of the current funding cycle by

fundingCycleStore.currentOf(_projectId).reservedRate() rather than passing in an uncertain value.

Alleviation

The team heeded our advice and resolved this issue in commit

f670d12b5947d3d3e2fe6d1b4e2b3ac1845b655a .

Juicebox Contracts V2 Security Assessment

JCK-03 | Logic Issue On Migration

Category Severity Location Status

Logical Issue Medium JBController.sol: 681, 724 Acknowledged

Description

In the function migrate() , the old controller will call the function prepForMigrationOf() in the target

controller to transfer the token total supply. The _projectId used in these two functions are the same,

indicating that the two controllers will use the same _projectId . However, there may be already a created

project in the position of _projectId . Thus, without proper management, the migration may override the

currently active project in the target controller.

Recommendation

We recommend carefully managing the project and perhaps give the migrating project a new project id in

the target controller.

Alleviation

The team acknowledged this issue and they will leave it as it is.

Juicebox Contracts V2 Security Assessment

JCK-04 | Logic Issue About _processedTokenTrackerOf[_projectId]

Category Severity Location Status

Logical Issue Medium JBController.sol: 537~602 Acknowledged

Description

The state variable _processedTokenTrackerOf[_projectId] is used to track the reserved tokens for a

given project. When new tokens are minted, part of the tokens will be recorded with this variable instead of

directly minting.

However, in the function mintTokensOf() , the variable _processedTokenTrackerOf[_projectId] is only

updated when the passed-in _reservedRate equals to MAX_RESERVED_RATE or 0. When the value of

_reservedRate is between MAX_RESERVED_RATE and 0, the function mints part of the tokens but does not

record the other part in the variable _processedTokenTrackerOf[_projectId].

Since the beneficiaryTokenCount is the actual minted token amount, the other portion is the reserved

token amount which is _tokenCount - beneficiaryTokenCount . The new

_processedTokenTrackerOf[_projectId] should be:

_processedTokenTrackerOf[_projectId] = _processedTokenTrackerOf[_projectId] +

beneficiaryTokenCount - (_tokenCount - beneficiaryTokenCount)
= _processedTokenTrackerOf[_projectId] +

2 * beneficiaryTokenCount - _tokenCount

(The formula only shows the algebra calculation logic and does not consider the variable type.)

Recommendation

The reserve amount calculation logic described in the team’s response is only reasonable when the reserve

rate is a constant value that does not change. However, the reserve rate of a given project can be changed

when setting up a new funding cycle. Thus, if the project owner does not call the function

distributeReservedTokensOf() to distribute the reserved token, the reserve rate can be updated and the

calculation in the function _reservedTokenAmountFrom() will use the new reserve rate. Because the minted

amount(beneficiaryTokenCount) is already calculated by the old reserve rate, inconsistency occurs. This is

why we recommend recording the _processedTokenTrackerOf[_projectId] (reserve amount) for each

mint/burn operations in the functions mintTokensOf() and burnTokensOf().

Alleviation

Juicebox Contracts V2 Security Assessment

The team acknowledged this issue and they stated the following:

"This issue is well known and by design — a tradeoff of making the mint/pay transaction as cheap as

possible."

Juicebox Contracts V2 Security Assessment

JCK-05 | Logic Issue In _reservedTokenAmountFrom()

Category Severity Location Status

Logical Issue Minor JBController.sol: 868~890 Acknowledged

Description

The return value of the function _reservedTokenAmountFrom() may be incorrect.

According to the code, the _processedTokenTracker is

the minted token amount(total supply) - _unprocessedTokenBalanceOf

Thus, L874 will calculate the _unprocessedTokenBalanceOf correctly by the result of "total supply -

_processedTokenTracker". As we mentioned in the issue JCK-03 , the reserved token amount is the un-

minted token recorded with _processedTokenTracker . So the _unprocessedTokenBalanceOf calculated in

L874 is exactly the reserved token amount and the return statement (L884-L889) in the function

_reservedTokenAmountFrom() can just return the value of _unprocessedTokenBalanceOf .

Recommendation

The reserve amount calculation logic described in the team’s response is only reasonable when the reserve

rate is a constant value that does not change. However, the reserve rate of a given project can be changed

when setting up a new funding cycle. Thus, if the project owner does not call the function

distributeReservedTokensOf() to distribute the reserved token, the reserve rate can be updated and the

calculation in the function _reservedTokenAmountFrom() will use the new reserve rate. Because the minted

amount(beneficiaryTokenCount) is already calculated by the old reserve rate, inconsistency occurs. This is

why we recommend recording the _processedTokenTrackerOf[_projectId] (reserve amount) for each

mint/burn operations in the functions mintTokensOf() and burnTokensOf().

Alleviation

The team acknowledged this issue and they stated the following:

"This issue is well known and by design — a tradeoff of making the mint/pay transaction as cheap as

possible."

Juicebox Contracts V2 Security Assessment

JCK-06 | Lack Of Restriction On Function launchProjectFor()

Category Severity Location Status

Volatile Code Informational JBController.sol: 341 Acknowledged

Description

The function launchProjectFor() in the contract JBController does not have a permission restriction,

so anyone can call this function to create a project. This may allow the malicious users to take advantage

of this. For example:

Front-running: since project 1 is the platform project which receives the charged fees, the hackers

can create a project right after the contract deployment so that the hacker's project will be the

platform project.

The malicious user can call the function constantly to create many meaningless projects to

contaminate the project pool.

Recommendation

We recommend using whitelist for the function launchProjectFor() to only allow whitelisted users calling

this function.

Alleviation

The team acknowledged this issue and they stated the following:

"launchProjectFor() is accessible to the public without restriction by design. Anyone can launch a

project on the Juicebox protocol. This is an open protocol."

Juicebox Contracts V2 Security Assessment

JDC-01 | Centralization Risk In JBDirectory.sol

Category Severity Location Status

Centralization / Privilege Major JBDirectory.sol Acknowledged

Description

In the contract JBDirectory , the role owner has the authority over the following function:

function addToSetControllerAllowlist()/removeFromSetControllerAllowlist() : add/remove a

controller to/from the trusted controller list to allow the controller to set the controller of the current

directory to be another controller in the trusted list including itself.

Also, the role project owner has the authority over the following function:

function setControllerOf() : update the controller that manages how terminals interact with the

ecosystem,

function addTerminalsOf() : add terminals to the terminal list of a specific project.

Among the previous mentioned functions which can be called by the project owner, the specific operator

roles have the authority over the following function:

The operator with the SET_CONTROLLER permission and the controller in the trusted list can call the

function setControllerOf() to update the controller that manages how terminals interact with the

ecosystem.

The operator with the addTerminalsOf permission can call the function addTerminalsOf() to add

terminals to the project's list of terminals.

The contract deployer has the authority over the following function:

function constructor() : initialize important contract addresses to any contract addresses

implementing the corresponding interfaces, for example: operatorStore , projects .

Any compromise to the privileged accounts may allow the hacker to take advantage of this authority and

users' assets may suffer loss.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

Juicebox Contracts V2 Security Assessment

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different

level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with

the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

The team acknowledged this issue and they stated the following:

Juicebox Contracts V2 Security Assessment

"Adding and removing controllers from the allow list can be done by JuiceboxDAO members — only

trusted contracts should be added.

For each project, the above-mentioned functions can only be accessed by either the address that owns

the project's NFT or by operator addresses explicitly allowed by the address that owns the project's NFT."

(reference: https://docs.juicebox.money/protocol/learn/glossary/operator#operatable-functionality)

Juicebox Contracts V2 Security Assessment

https://docs.juicebox.money/protocol/learn/glossary/operator#operatable-functionality

JFS-01 | Centralization Risk In JBFundingCycleStore.sol

Category Severity Location Status

Centralization / Privilege Major JBFundingCycleStore.sol Acknowledged

Description

In the contract JBFundingCycleStore , the role directory.controllerOf(_projectId) has the authority

over the following function:

function configureFor() : configures the next eligible funding cycle for a specified project.

The contract deployer has the authority over the following function:

function constructor() : initialize the contract address directory to any arbitrary address.

Any compromise to the privileged accounts may allow the hacker to take advantage of this authority and

users' assets may suffer loss.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different

level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

Juicebox Contracts V2 Security Assessment

A medium/blog link for sharing the timelock contract and multi-signers addresses information with

the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

The team acknowledged this issue and stated the following:

"A project’s controller is the only address that has access to configureFor() to configure a project’s

funding cycle. This is by design. It would be a major flaw if this were not the case."

Juicebox Contracts V2 Security Assessment

JPC-01 | Centralization Risk In JBPrices.sol

Category Severity Location Status

Centralization / Privilege Major JBPrices.sol: 109 Acknowledged

Description

In the contract JBPrices , the role owner has the authority over the following function:

function addFeedFor() : add a price feed for a currency in terms of the provided base currency.

Any compromise to the privileged accounts may allow the hacker to take advantage of this authority and

users' assets may suffer loss.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different

level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with

the public audience.

Long Term:

Juicebox Contracts V2 Security Assessment

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

The team acknowledged this issue and they stated the following:

"JuiceboxDAO members have the ability to add new price feeds to JBPrices through addFeedFor(). This is

by design."

Juicebox Contracts V2 Security Assessment

JPC-02 | Third Party Dependencies Of AggregatorV3Interface

Category Severity Location Status

Logical Issue Minor JBPrices.sol: 39 Acknowledged

Description

The contract is serving as the underlying entity to interact with third-party AggregatorV3Interface. The

scope of the audit treats 3rd party entities as black boxes and assumes their functional correctness.

However, in the real world, 3rd parties can be compromised and this may lead to lost or stolen assets. In

addition, upgrades of 3rd parties can possibly create severe impacts, such as increasing fees of 3rd

parties, migrating to new LP pools, etc.

Recommendation

We understand that the business logic of JBPrices requires interaction with AggregatorV3Interface. We

encourage the team to constantly monitor the statuses of 3rd parties to mitigate the side effects when

unexpected activities are observed.

Alleviation

The team acknowledged this issue and they stated the following:

"Dependence of Chainlink price feeds is by design."

Juicebox Contracts V2 Security Assessment

JPK-01 | Centralization Risk In JBProjects.sol

Category Severity Location Status

Centralization / Privilege Major JBProjects.sol Acknowledged

Description

In the contract JBProjects , the role owner has the authority over the following function:

function setTokenUriResolver() : change the funding cycle configurations for a given project.

Also, the project owner and the operator with the SET_METADATA permission have the authority over the

following function:

function setMetadataOf() : initialize the funding cycle configurations for a given project.

Any compromise to the privileged accounts may allow the hacker to take advantage of this authority and

users' assets may suffer loss.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different

level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

Juicebox Contracts V2 Security Assessment

A medium/blog link for sharing the timelock contract and multi-signers addresses information with

the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

The team acknowledged this issue and they stated the following:

"A project’s owner or operators are explicitly given permission by the project’s owner can set metadata of

the project. This is by design."

Juicebox Contracts V2 Security Assessment

JSS-01 | Centralization Risk In JBSplitsStore.sol

Category Severity Location Status

Centralization / Privilege Major JBSplitsStore.sol Acknowledged

Description

In the contract JBSplitsStore , the role project owner has the authority over the following function:

function set() : to add a project's splits to the original ones.

Also, the operator with the SET_SPLITS permission has the authority over the following function:

function set() to add a project's splits to the original ones.

Any compromise to the privileged accounts may allow the hacker to take advantage of this authority and

users' assets may suffer loss.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different

level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

Juicebox Contracts V2 Security Assessment

A medium/blog link for sharing the timelock contract and multi-signers addresses information with

the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

The team acknowledged this issue and they stated the following:

"For each project, the above-mentioned functions can only be accessed by either the address that owns

the project's NFT or by operator addresses explicitly allowed by the address that owns the project's NFT."

(reference: https://docs.juicebox.money/protocol/learn/glossary/operator#operatable-functionality)

Juicebox Contracts V2 Security Assessment

https://docs.juicebox.money/protocol/learn/glossary/operator#operatable-functionality

JTC-01 | Centralization Risk In JBToken.sol

Category Severity Location Status

Centralization / Privilege Major JBToken.sol Acknowledged

Description

In the contract JBToken , the role owner has the authority over the following function:

function mint() : to mint arbitrary amount of new tokens,

function burn() : to burn some tokens,

function transferOwnership() : to transfer the owner privilege to the new owner.

Any compromise to the privileged accounts may allow the hacker to take advantage of this authority and

users' assets may suffer loss.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different

level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with

the public audience.

Juicebox Contracts V2 Security Assessment

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

The team acknowledged this issue and they stated the following:

"The owner of JBToken will be the contract JBTokenStore, which should be the only address able to mint(),

burn(), and transferOwnership(). This is by design."

Juicebox Contracts V2 Security Assessment

JTS-01 | Centralization Risk In JBTokenStore.sol

Category Severity Location Status

Centralization / Privilege Major JBTokenStore.sol Acknowledged

Description

In the contract JBTokenStore , the role project owner (Of _projectId) has the authority over the following

function:

function shouldRequireClaimingFor() : to allow a project to force all future mints to be claimed into

the holder's wallet.

The role holder has the authority over the following function:

function transferTo() : to transfer unclaimed tokens to another account.

Also, the operator with the REQUIRE_CLAIM permission has the authority over the following function:

function shouldRequireClaimingFor() : to allow a project to force all future mints to be claimed into

the holder's wallet.

The operator with the TRANSFER permission has the authority over the following function:

function transferTo() : to transfer unclaimed tokens to another account.

The role Controller has the authority over the following function:

function burnFrom() : to burn tokens.

function mintFor() : to mint new tokens.

function changeFor() : to swap the current project's token that is minted and burned for another,

and transfer ownership of the current token to another address if needed.

function issueFor() :to issues a ERC-20 token.

Any compromise to the privileged accounts may allow the hacker to take advantage of this authority and

users' assets may suffer loss.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

Juicebox Contracts V2 Security Assessment

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different

level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with

the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

Juicebox Contracts V2 Security Assessment

The team acknowledged this issue and they stated the following:

"For each project, the above-mentioned functions can only be accessed by either the address that owns

the project's NFT or by operator addresses explicitly allowed by the address that owns the project's NFT."

(reference: https://docs.juicebox.money/protocol/learn/glossary/operator#operatable-functionality)

Juicebox Contracts V2 Security Assessment

https://docs.juicebox.money/protocol/learn/glossary/operator#operatable-functionality

JUI-01 | Project Contract Implementations And Parameter Settings Can

Be Arbitrarily Set And Modified

Category Severity Location Status

Centralization / Privilege Critical
JBController.sol

JBDirectory.sol
Acknowledged

Description

The protocol provides a platform where everyone can create a project and become the owner of this

project. The contracts composed of a given complete project can be initialized in the constructors via

passing the contract addresses as parameters, however, they can be initialized
to malicious contracts that

implement the protocol-defined interfaces,
or modified by the project owner and corresponding operators

after the launch.

For example,

JBController.constructor(), to set the IJBOperatorStore , IJBProjects , IJBDirectory ,

IJBFundingCycleStore , IJBTokenStore and IJBSplitsStore address

JBDirectory.constructor(), to set the IJBProjects address

JBDirectory.setControllerOf(), to modify the IJBController address

JBDirectory.addTerminalsOf()/removeTerminalOf(), to modify the IJBTerminal addresses

Although this provides great extensibility to each project, the protocol will have no control over the created

projects, and the project users' assets may suffer loss.

Even when the project owner adopts the default implementation of the project contracts, the project owner

has the privilege to set all the parameters of a funding cycle, terminals, tokens, splits, and beneficiaries

without any limitations. As a result, the project users may not get as many ETHs as expected when

redeeming, or even worse, may not be able to redeem any ETHs. The project owner, splits and

beneficiaries are able to get ETHs by the functions distributePayoutsOf() and useAllowanceOf() .

For example, if the _percentTotal values of all the splits are set quite low, the rest

_leftoverDistributionAmount ETHs in the function distributePayoutsOf() will be transferred directly

to the project owner's address, which may cause a huge loss of the project users.

Recommendation

We would like to confirm with the client if the current implementation aligns with the original project design.

Juicebox Contracts V2 Security Assessment

Alleviation

The team acknowledged this issue and they stated the following:

"JuiceboxDAO has no control over each project’s behavior, and each project can roll its own extensions

that can add arbitrary amounts of risk and cost alongside powerful functionality to the default protocol

behavior. This is by design. Use at your own risk, and feel free to fork to offer more restrictions."

Juicebox Contracts V2 Security Assessment

JUI-02 | Investor Assets Are Diluted By The Reserved Token

Category Severity Location Status

Logical Issue Major
JBController.sol: 537

JBETHPaymentTerminalStore.sol: 301~308, 722~737

JBETHPaymentTerminal.sol

Acknowledged

Description

In the contract JBETHPaymentTerminal and JBETHPaymentTerminalStore , neither do the investors get an

equivalent amount of minted project token when depositing ETHs and nor do they get an equivalent

amount of ETHs when burning the project token.

The investors deposit ETH and get the minted project token by calling the function pay() . The mint

amount is the deposited ETH amount multiplied by the weight set in the funding cycle configurations.

However, the function mintTokensOf() in the contract JBController only mint a portion of the mint

amount. The other portion is distributed to the reserved token splits by the function

distributeReservedTokensOf() and the leftover amount (_leftoverTokenCount) of the tokens are minted

directly to the project owner.

 beneficiaryTokenCount = PRBMath.mulDiv(beneficiaryTokenCount = PRBMath.mulDiv(

 _tokenCount, _tokenCount,

 JBConstants.MAX_RESERVED_RATE - _reservedRate, JBConstants.MAX_RESERVED_RATE - _reservedRate,

 JBConstants.MAX_RESERVED_RATE JBConstants.MAX_RESERVED_RATE

););

 // Mint the tokens. // Mint the tokens.

 tokenStore.mintFor(_beneficiary, _projectId, beneficiaryTokenCount, tokenStore.mintFor(_beneficiary, _projectId, beneficiaryTokenCount,
_preferClaimedTokens);_preferClaimedTokens);

Also, in the function redeemTokensOf() , the investors only can get a portion of the overflow ETHs after the

project owner distributes the ETHs to the splits by the function distributePayoutsOf() . However, the

function recordRedemptionFor() still burns out all the _tokenCount .

uint256 _base = PRBMath.mulDiv(_currentOverflow, _tokenCount, _totalSupply);

returnreturn

 PRBMath.mulDiv(PRBMath.mulDiv(

 _base, _base,

Juicebox Contracts V2 Security Assessment

 _redemptionRate + _redemptionRate +

 PRBMath.mulDiv(PRBMath.mulDiv(

 _tokenCount, _tokenCount,

 JBConstants.MAX_REDEMPTION_RATE - _redemptionRate, JBConstants.MAX_REDEMPTION_RATE - _redemptionRate,

 _totalSupply _totalSupply

),),

 JBConstants.MAX_REDEMPTION_RATE JBConstants.MAX_REDEMPTION_RATE

););

directory.controllerOf(_projectId).burnTokensOf(_holder, _projectId, _tokenCount, '', false);

Recommendation

We would like to confirm with the client if the current implementation aligns with the original project design.

Alleviation

The team acknowledged this issue and they stated the following:

"These are by design. Contributors to projects should understand and approve of how a project is

configured and controlled before making a decision to commit funds."

Juicebox Contracts V2 Security Assessment

Juicebox Contracts V2 Security Assessment

JUI-03 | Calculation Issues By Wrong Divisors

Category Severity Location Status

Logical Issue Minor
JBController.sol: 885~889

JBETHPaymentTerminal.sol: 729~731
Acknowledged

Description

The divisors used in the below calculations are confusing.

 PRBMath.mulDiv(PRBMath.mulDiv(

 _unprocessedTokenBalanceOf, _unprocessedTokenBalanceOf,

 JBConstants.MAX_RESERVED_RATE, JBConstants.MAX_RESERVED_RATE,

 JBConstants.MAX_RESERVED_RATE - _reservedRate JBConstants.MAX_RESERVED_RATE - _reservedRate

) - _unprocessedTokenBalanceOf;) - _unprocessedTokenBalanceOf;

feeAmount =feeAmount =

 _amount - _amount -

 PRBMath.mulDiv(_amount, JBConstants.MAX_FEE, _discountedFee + JBConstants.MAX_FEE); PRBMath.mulDiv(_amount, JBConstants.MAX_FEE, _discountedFee + JBConstants.MAX_FEE);

Normally the below formula would be used:

_unprocessedTokenBalanceOf * _reservedRate / JBConstants.MAX_RESERVED_RATE,

_amount * (1 - _discountedFee / JBConstants.MAX_FEE).

Recommendation

We would like to confirm with the client if the current implementation aligns with the original project design.

Financial models of blockchain protocols need to be resilient to attacks. They need to pass simulations

and verifications to guarantee the security of the overall protocol.

The financial model of this protocol is not in the scope of this audit.

Alleviation

The team acknowledged the issue and explained their design in the following doc:

https://docs.juicebox.money/protocol/api/contracts/or-

abstract/jbpayoutredemptionpaymentterminal/read/_feeamount

Juicebox Contracts V2 Security Assessment

Juicebox Contracts V2 Security Assessment

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may

result in a vulnerability.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

Juicebox Contracts V2 Security Assessment

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the

Agreement. This report provided in connection with the Services set forth in the Agreement shall be used

by the Company only to the extent permitted under the terms and conditions set forth in the Agreement.

This report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes,

nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing

development. You agree that your access and/or use, including but not limited to any services, reports,

and materials, will be at your sole risk on an as-is, where-is, and as-available basis. Cryptographic tokens

are emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives, false negatives, and other unpredictable results. The

services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS,

OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS

Juicebox Contracts V2 Security Assessment

AVAILABLE” AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE

MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL

WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE

SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE FOREGOING,

CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK

MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT,

WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF,

WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE

SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION

TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO

REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS,

ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY

PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR

DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY,

RELIABILITY, OR CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE

SERVICE. CERTIK WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES,

OR INACCURACIES OF CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND

INCURRED AS A RESULT OF THE USE OF ANY CONTENT, OR (II) ANY PERSONAL INJURY OR

PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM CUSTOMER’S ACCESS TO

OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY

OF OR CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE

THIRD-PARTY OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY

PROVIDED TO CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY

PURPOSE NOT SPECIFICALLY IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO,

ANY OTHER PERSON WITHOUT CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR

OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

Juicebox Contracts V2 Security Assessment

MATERIALS AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST

CERTIK WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE

SOLELY FOR THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING

ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH

REPRESENTATIONS AND WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF

CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH REPRESENTATIONS OR WARRANTIES OR

ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER THIS AGREEMENT OR

OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS

OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX,

LEGAL, REGULATORY, OR OTHER ADVICE.

Juicebox Contracts V2 Security Assessment

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

Juicebox Contracts V2 Security Assessment

